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1 Introduction

Building a resilient portfolio requires more than just historical mean-variance analysis, as we
have learned throughout the course. It demands a framework that captures the full variety
of possible price behaviors and interest-rate environments. In this project, we calibrate four
distinct price-dynamics models (Geometric Brownian Motion, Merton jump-diffusion, Constant
Elasticity of Variance, and Heston stochastic volatility) to one-year historical return data. By
simulating thousands of Monte Carlo paths under each model and generating stochastic rate
scenarios (Vasicek, CIR, Ho-Lee), we create a comprehensive set of forward-looking return
distributions and discount factors. Using these portfolios, we optimize portfolio allocations
to maximize the average Sharpe ratio, first for an equity-only scenario and then extended
to include plain-vanilla options. Finally, we examine how alternative interest-rate dynamics
reshape optimal weights under both Sharpe-ratio and classic mean-variance criteria.

2 Data

We used a dataset composed of daily stock price data for a portfolio of ten publicly traded large-
cap companies from 5 different sectors: technology, healthcare, finance, energy, and consumer
goods. The portfolio includes Apple (AAPL), Nvidia (NVDA), UnitedHealth Group (UNH), Eli
Lilly (LLY), JPMorgan Chase (JPM), Blackstone (BX), Costco Wholesale (COST), PepsiCo
(PEP), ExxonMobil (XOM), and Enphase Energy (ENPH). We obtained historical closing
prices for each stock from Yahoo Finance over a one-year period using the yfinance API. After
gathering the raw price data, we calculated daily returns. This was the basis for estimating key
statistical measures such as the annualized mean returns and the annualized covariance matrix
of returns where we assumed 252 trading days per year. These measures are the foundational
inputs for portfolio construction and optimization. The historical data and model parameters
feed directly into the portfolio optimization framework. Our framework is modular overall, and
in the future this same framework could be used to perform the same analysis on any year long
historical return data. For the basis of the model, we used a risk free rate of 0.035 found from
online sources to be approximately the risk free rate for the past year. To advance this project
further, we could have derived this risk free rate from data. Given more time to work on the
project, we could consider a larger portfolio or work on integrating ETFs into our work.
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3 Techniques

3.1 Optimizing Our Initial Portfolio

We performed constrained optimization to select weights that maximize the Sharpe ratio using
our previously computed annualized return vector and covariance matrix. Since most solvers
minimize, we defined the objective function as the negative Sharpe ratio. We enforced two
natural constraints that weights sum to one (full investment) and each weight lies between
zero and one (no short sales) and then provided an equally weighted vector as our starting
guess. Finally, we called scipy.optimize.minimize with Sequential Least Squares Programming
(SLSQP) to find the optimal allocation, and then inverted the sign of the objective value to
report the maximum Sharpe ratio achieved.

3.2 Simulating the Future Portfolio

After collecting our data as described in the data section, we incorporated select model-specific
parameters to better capture the underlying dynamics of each stock. Before being able to sim-
ulate the Merton jump-diffusion model, we identified jumps as days where log returns deviated
by more than two standard deviations from the mean. We then estimated the jump intensity λ
as the frequency of those events per year, and computed the average jump size µj and its volatil-
ity σj. For the Constant Elasticity of Variance (CEV) model, we regressed log(squared returns)
against log(prices) in a one-month rolling window to estimate beta β, which is the elasticity
exponent showing how volatility scales with price. For the Heston model, we set the long-run
variance θ to the annualized variance of log returns, computed the volatility of variance ξ as the
standard deviation of a 21-day rolling variance (annualized), and estimated the return-variance
correlation ρ using the Pearson correlation between returns and changes in rolling variance.
We kept the mean-reversion speed κ fixed at 2.0 for stability. These model-specific calibrations
allowed for more realistic simulations of future price dynamics.

After computing these parameters, we began to build our simulation framework consisting
of four Monte Carlo simulator functions: Geometric Brownian Motion, Merton, CEV, and
Heston. Each of these simulations accepts an initial price S0, drift µ, volatility σ, time horizon
T , time-step ∆t, number of steps n, and the model-specific parameters. Using these inputs,
each function computes the number of steps N and creates a NumPy array of shape (n,N +1),
setting the first column to S0. Then each function updates the price differently at each step.

The Geometric Brownian Motion (GBM) simulator applies the classical Black–Scholes dif-
fusion. At each time increment, it draws a standard normal shock for each price evolution
according to:

St+∆t = St exp
(
(µ− 1

2
σ2)∆t+ σ

√
∆tZ

)
This ensures log-normally distributed outcomes and constant proportional volatility.
The Merton jump-diffusion function builds off of GBM by adding random jumps. After

drawing the same Gaussian shock Z, it simulates a Poisson count Nj ∼ Pois(λ∆t) of jumps
in each interval. If Nj > 0, it generates Nj independent Normal(µj, σj) jump sizes and sums
them to obtain a total jump J . A compensator term κ = exp(µj +

1
2
σ2
j )− 1 is subtracted from

the drift so that the process remains martingale under the risk-neutral measure. The price now
evolves according to:

St+∆t = St exp
(
(µ− 1

2
σ2 − λκ)∆t+ σ

√
∆tZ + J

)
The CEV (Constant Elasticity of Variance) function departs from pure exponentiation

and instead uses an additive Euler-type scheme where volatility scales as Sβ
t . After draw-
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ing Z, it floors any previous price below a tiny ε to avoid zero-divisions, computes vol term =
max(σSβ

t , 0.05) to prevent extreme volatility, and then updates:

St+∆t = St + µSt∆t+ vol term
√
∆tZ

The Heston function tracks both the asset price and its instantaneous variance Vt. At each
step it draws two correlated normals Z1, Z2 with correlation ρ. Variance is advanced via a
full-function Euler discretization:

Vt+∆t = Vt + κ(θ − Vt)∆t+ ξ
√

max(Vt, 0)
√
∆tZ1

which ensures nonnegative variance. The price then follows:

St+∆t = St exp
(
(µ− 1

2
Vt)∆t+

√
max(Vt, 0)

√
∆tZ2

)
These four functions provide different levels of model complexity from the simplest constant-

volatility diffusion to full stochastic-volatility plus jumps which enable and constrain the dy-
namics with different assumptions about price dynamics affected at the microstructure level.

3.3 Optimizing the Future Portfolio

We started the optimization process by initializing our four modeling scenarios (GBM, Merton
jump-diffusion, CEV, and Heston) over a one-year horizon with daily steps and 5,000 Monte
Carlo paths. For each ticker and each model, we call the corresponding simulator to generate
price paths and record the terminal returns into a dictionary. We then set up an optimization to
maximize the average Sharpe ratio across all four models. Our objective function first imposes
a heavy penalty if any weight is negative, then, for each model, computes the portfolio return
series as the dot product of simulated returns and the weight vector, calculates that model’s
Sharpe ratio, and finally returns the negative of the mean Sharpe across models. We constrain
the weights to sum to one (full investment) and lie between zero and one (no shorting), and we
start from an equal-weight guess. Using SciPy’s SLSQP solver, we find the optimal allocation
that balances performance under all price dynamics.

3.4 Stochastic Interest Rate Models

To compare the uncertainty in future discount rates, we simulated three classic short-rate
processes over the same year using a daily-step grid (∆t = 1/252):

• Vasicek: Allowing rates to mean-revert but briefly go negative.

• CIR: Enforcing nonnegativity via the root diffusion term.

• Ho-Lee: A Gaussian model with constant drift alpha.

We set r0 equal to 3%, κ equal to 5, θ equal to 4%, σ equal to 10%, and α equal to 1% (for
Ho-Lee). For each path, we compute a one-year discount factor:

Dt = exp

(
−

252∑
i=1

r
(t)
i ∆t

)
Then invert it to obtain the pathwise continuously compounded rate rt = − ln(Dt). These

rate scenarios were then used for pricing our options and for setting the risk-free anchor in our
portfolio optimizations.
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3.5 Optimizing the Future Portfolio with Stochastic Interest Rates

To optimize our future portfolio with stochastic interest rates, we re-optimized our portfolio
using each rate model to see how the bond environment alters the optimal allocation. In
doing this, we chose to also compare our current Sharpe-ratio-based model with a Markowitz
mean-variance minimization strategy.

In our Sharpe maximization strategy, we treated each model’s vector as the pathwise risk
free rates and maximized the average Sharpe ratio:

max
w∈∆n

1

5000

5000∑
i=1

Rp,i − ri
σp,i

where Rp,i is the simulated portfolio return on path i, and σp,i is its overall volatility. This
produced three portfolios with one per rate-model in order to view how a steeper mean-reversion
(CIR) versus unbounded negatives (Vasicek) shifts weight toward or away from duration sen-
sitive stocks and hedges.

In our classical Markowitz mean-variance strategy, we distilled each model’s ri into a con-
stant r-bar equal to the expected value of ri, subtracted this from our average equity return
vector, and then solved:

min
w∈∆n

w⊤Σw s.t. w⊤µ ≥ R̄target

This yielded three portfolios that balance mean excess return against variance under each
rate-model’s implied discount.

3.6 Adding Options to Improve Sharpe Ratio

To further improve upon Sharpe ratio for our current equity-only portfolio, we introduced
plain-vanilla at-the-money European calls and puts for each underlying stock. Each option was
given an expiry of one year and priced using Black-Scholes formula by plugging in the average
implied short-rate from our simulations as the constant, the current stock price as the strike,
and each stock’s annualized volatility estimated from historical returns. For each Monte Carlo
path i and stock j, we then computed the option’s pathwise return:

Ropt
i,j =

Payoffi,j − Premiumj

Premiumj

where the payoff is max(K − ST , 0) for puts and max(ST −K, 0) for calls.
This broadens our portfolio’s possible outcomes by tripling the available financial instru-

ments. Upon re-running our Sharpe maximization over this set, we saw an increase across the
three different stochastic interest rate models by using hedging puts to further decrease risk
without sacrificing upside.

4



4 Results

4.1 Optimizing Our Initial Portfolio

Optimization drives the portfolio to a very concentrated allocation with roughly 71.9% of
capital placed in Costco (COST), 24.7% in JPMorgan (JPM), and a small 3.4% in Nvidia
(NVDA), with all other positions set to zero. This reflects those three names’ combination of
high expected return and relatively low covariance with the rest of the stocks over the past year.
The bar chart shows this allocation with Costco’s bar above the others, followed by JPM and
NVDA. The portfolio achieves an annualized Sharpe ratio of approximately 1.47, indicating an
efficient risk-adjusted return by historical standards.

4.2 Optimizing the Future Portfolio using GBM, Merton, CEV and
Heston

Geometric Brownian Motion

Under GBM, the portfolio becomes concentrated in six stocks, with 38.8% of capital allocated
to Costco (COST), 21.3% to JPMorgan (JPM), 15.4% to Apple (AAPL), 12.6% to Eli Lilly
(LLY), 6.7% to Blackstone (BX), and 5.2% to Nvidia (NVDA). The remaining four stocks
(UNH, PEP, XOM, ENPH) receive zero weight. This mix reflects each asset’s trade-off of
expected return versus volatility under the assumed price dynamics, with Costco’s combination
of stable cash flows and low correlation driving its dominant allocation. The resulting portfolio
achieves an annualized Sharpe ratio of approximately 1.70. Below the two figures show the
optimized weights for the portfolio and the return distribution after running 5,000 trials.
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Merton

Under the Merton jump-diffusion assumptions, the optimizer again concentrates the portfolio in
five stocks, with 52.8% of capital allocated to Costco (COST), 14.6% to Apple (AAPL), 13.6%
to Eli Lilly (LLY), 10.6% to JPMorgan (JPM), and 8.5% to Nvidia (NVDA), with all remaining
stocks receiving zero weight. The achievable annualized Sharpe ratio drops to approximately
0.75 under the Merton dynamics. This reflects the increased downside risk from jump events
and the heavier tail behavior of asset returns relative to simpler models. Below the two figures
show the optimized weights for the portfolio and the return distribution after running 5,000
trials.
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Constant Elasticity of Variance (CEV)

Under the CEV dynamics, the optimizer places 98.6% of the portfolio in Costco (COST),
with only negligible stakes in Apple, Nvidia, Eli Lilly, and JPMorgan, and zero allocation to
the remaining names. This extreme concentration reflects Costco’s status as the lowest-risk
asset under the CEV specification, where volatility scales with the stock price raised to a
power β. Because our implementation also imposes a minimum volatility “floor,” the optimizer
interprets Costco as having nearly deterministic returns. As a result, the annualized Sharpe
ratio skyrockets to an implausible value of approximately 272.6, signaling that the model’s
numerical settings have artificially crushed perceived risk and created a degenerate optimization
outcome.

This behavior highlights a clear flaw in our CEV implementation. Under the calibrated
model, volatility follows σCEV(St) = σSβ

t , which—when β is compressed due to limited data
and noisy regressions—causes the volatility of high-priced stocks like Costco to collapse toward
zero. The optimizer then allocates nearly the entire portfolio to this “risk-free” asset, inflating
the Sharpe ratio unrealistically. Although we enforced a small volatility floor, it was insufficient
to restore realistic risk levels for high-priced assets.
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In future work, our team should consider estimating β over longer time windows, applying
tighter bounds or priors on its value, or exploring alternative discretization schemes like log-
CEV to better preserve randomness. Additionally, imposing a maximum weight constraint
could prevent the optimizer from over-concentrating in any single asset. Below, the two figures
show the optimized weights for the portfolio and the return distribution after running 5,000
trials.

Heston

Under the Heston stochastic-volatility specification, the optimized portfolio again has a large
percent in Costco at 38.5 %, followed by JPMorgan at 21.3 %, Apple at 15.6 %, Eli Lilly at
11.6 %, Blackstone at 7.8 %, and a small 5.2 % allocation to Nvidia. The other four stocks are
excluded. This blend reflects how the Heston model’s mean-reverting variance and correlation
structure value relatively stable, low-covariance equities while still capturing upside from growth
names. The resulting annualized Sharpe ratio of approximately 1.745 indicates that, even once
volatility itself is random and path-dependent, this mix delivers strong risk-adjusted returns
in our simulated scenarios. Below the two figures show the optimized weights for the portfolio
and the return distribution after running 5,000 trials.
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4.3 Portfolio Optimization Across GBM, Merton, and Heston Mod-
els (excluding CEV)

From these initial four models, we see that they all indicate selecting similar assets in the
portfolio. Simple diffusions (GBM, Heston) deliver comparable Sharpe ratios above 1.7, jump-
diffusion penalizes tail risk, and the näıve CEV setup collapses to a degenerate solution. After
seeing the poor results with CEV we focused on GBM, Merton jump-diffusion, and Heston
models for further optimization. After minimizing the negative of the average Sharpe across
these three scenarios, we obtained the following allocations: Costco (COST) 41.3%, JPMorgan
(JPM) 19.7%, Apple (AAPL) 15.5%, Eli Lilly (LLY) 11.9%, Blackstone (BX) 5.9%, with small
residual stakes in Nvidia (NVDA) 5.6% and zeros elsewhere. When we plug these weights back
into each model’s simulations, the resulting annualized Sharpe ratios are 1.693 under GBM,
0.708 under Merton (reflecting the drag from jump risk), and 1.720 under Heston’s stochastic-
volatility paths. Below the two figures show the optimized weights for the portfolio and the
return distribution for the three models after running 5,000 trials.
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4.4 Optimizing the Future Portfolio with Stochastic Interest Rates

Under the Vasicek framework, which permits short-term rates to dip below zero, the portfolio
tilts toward defensive stocks less sensitive to discount-rate swings. Costco commands 41.00
% of capital, followed by 21.15 % in JPMorgan, 14.33 % in Apple, 11.55 % in Eli Lilly, 6.45
% in Blackstone, and 5.52 % in Nvidia, with the remainder at zero. This allocation yields
annualized Sharpe ratios of 1.679 under GBM, 0.656 under Merton jump-diffusion, and 1.678
under Heston stochastic volatility, reflecting how negative-rate scenarios modestly boost bond-
like equity values while still rewarding core growth names.

When interest rates follow the CIR process which enforces nonnegative yields and stronger
mean reversion, the optimizer favors slightly higher equity exposure to offset generally higher
discount factors. The resulting weights are nearly identical: 40.99 % in Costco, 21.14 % in
JPMorgan, 14.34 % in Apple, 11.54 % in Eli Lilly, 6.45 % in Blackstone, and 5.53 % in Nvidia.
Sharpe ratios under each model were 1.676 (GBM), 0.654 (Merton), and 1.675 (Heston), showing
that the different interest rate model did not alter the portfolio’s core tilt.

Under the Ho–Lee arithmetic short-rate model, which imposes a constant drift on rates, the
optimized allocation again centers on the same six names: 41.08 % Costco, 21.14 % JPMorgan,
14.32 % Apple, 11.53 % Eli Lilly, 6.38 % Blackstone, and 5.55 % Nvidia and zeros elsewhere.
The corresponding Sharpe ratios are 1.664 for GBM, 0.645 for Merton, and 1.662 for Heston.
This middle-ground rate path produces a blend that sits between the defensive bias of Vasicek
and the slightly more aggressive tilt of CIR, but it still rewards the same resilient equities.

Across all three interest-rate scenarios, the optimal portfolio remains stable with a diversified
mix of low-covariance, high-efficiency stocks, and the annualized Sharpe ratios shift by only a
few hundredths. Rate uncertainty leads to only subtle rebalancing without completely changing
the allocation. This consistency highlights how robust a multi-model approach can be, and it
demonstrates that even as rates follow very different stochastic paths, the same core equity
selection continues to maximize risk-adjusted returns.

After completing this baseline understanding of the interest rate models, we constructed two
different portfolios to illustrate the contrast between a scenario-based Sharpe-ratio approach
and the classical mean–variance optimization. In the first method, we treated each of our three
calibrated price models—GBM, Merton jump-diffusion, and Heston stochastic volatility—as a
separate market “scenario” and chose the weight vector that maximized the average Sharpe
ratio across them. This process drove the allocation toward a handful of high-efficiency names:
about 41.7 % in Costco, 19.8 % in JPMorgan, 15.1 % in Apple, 11.9 % in Eli Lilly, 5.9 % in
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Nvidia, and 5.7 % in Blackstone, yielding an average Sharpe of 1.392.
However, the Markowitz (MVO) portfolio took the historical average return (approximately

7.50 %) as a binding constraint and minimized variance subject to meeting that target. The
resulting allocation was far more diversified with no position in Apple or Blackstone, roughly
28.4 % in Costco, 27.4 % in PepsiCo, 15.1 % in ExxonMobil, 10.3 % in both JPMorgan and
UnitedHealth, 6.4 % in Eli Lilly, and 2.1 % in Nvidia. This produced a volatility of 14.20 % and
a much lower Sharpe of 0.303. When plotted side by side, we see a concentrated, high–Sharpe
portfolio that bets heavily on the most resilient names across our simulations on the left and a
broad, target-return portfolio that sacrifices risk-adjusted efficiency for diversification.

This comparison tells us that our stochastic models are doing exactly what they’re designed
to do. They capture dynamics like volatility clustering and mean reversion that the sample
mean–variance framework overlooks. When we optimize across these models, we see portfolios
that favor equities most resilient to each form of risk resulting in significantly higher theoretical
Sharpe ratios. At the same time, the scenario–Sharpe allocation’s concentration in just six
stocks highlights a central trade-off. The richness in model structure can yield more “efficient”
portfolios on paper, but it also amplifies model-risk. The classical MVO portfolio, though
less efficient, naturally guards against any single model’s misspecifications by spreading bets
across a wider range of equities. These results suggest a balanced path forward for investors
of leveraging these stochastic models to identify opportunities while acknowledging potential
exposure to risk.

4.5 Optimizing the Future Portfolio with Options

To complete our project we added at-the-money European options to our core equities, then
optimized weights by averaging across all six interest-rate scenarios (Vasicek, CIR, Ho–Lee)
and the three price-dynamics models (GBM, Merton, Heston). This framework produced the
following allocation: 31.01 % in Costco, 14.27 % in JPMorgan, 10.60 % in Apple, 9.61 % in Eli
Lilly, 6.51 % in Blackstone, 3.97 % in Nvidia, combined with protective puts on UnitedHealth
(3.97 %), Blackstone (1.08 %), PepsiCo (5.83 %), ExxonMobil (2.65 %), and Enphase (10.51
%). All call positions remained at zero.
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The resulting Scenario Sharpe ratio jumps to 2.3309 (This is the average over all models).
Model-by-model, the portfolio achieves annualized Sharpe ratios of 2.215 under GBM, 2.566
under Merton’s jump-diffusion, and 2.212 under Heston. The higher Sharpe in the Merton case
shows how the put insulates against heavy-tailed shocks, while the strong performance under
GBM and Heston confirms the overlay’s accretive effect even in smoother markets. This shows
that targeted allocation to plain-vanilla puts can substantially enhance risk-adjusted returns
and bolster portfolio resilience. The portfolio’s risk was more evenly spread across a mix of
stocks and options, enhancing diversification. Extending this to other scenarios, since our
portfolio was relatively small, we can hypothesize that calls can also add an advantage under
other circumstances. In the future, we could build upon our project’s framework to include a
wider variety of options.

5 Conclusion

Throughout this project we demonstrated the value of a multi-model Monte Carlo approach
to portfolio construction. When driven by simple Geometric Brownian Motion and by the
Heston stochastic-volatility model, our optimizations produced similar, well-diversified alloca-
tions across Costco, JPMorgan, Apple, Eli Lilly, Blackstone, and Nvidia, each achieving an
annualized Sharpe ratio around 1.7. Introducing Merton’s jump-diffusion dynamics with its
heavier tails and sudden shock risk drove allocations even more toward low-correlation stocks
like Costco and JPMorgan, but lowered the attainable Sharpe to roughly 0.75. Our CEV im-
plementation exposed how sensitive the results are to parameter calibration and discretization
as our implementation led to an implausible Sharpe above 200.

By comparing these four price-dynamics side by side, we see that both diffusion-only and
stochastic-volatility models reward steady, low-covariance equities. By optimizing our portfolio
using the 3 effective models, the portfolio strikes a balance that performs well across both
constant-volatility and stochastic-volatility worlds, while still accounting for jump-diffusion
scenarios that will meaningfully erode risk-adjusted returns. Adding Vasicek, CIR, and Ho–Lee
short-rate generators into both our discounting and objective functions revealed how rate-model
choice subtly shifts optimal weights. It showed us how robustness to rate uncertainty can be
integrated into portfolio design. Extending our framework to include plain-vanilla options
further improved Sharpe ratios, proving intuition learned in class that utilizing options gives
an investor significant advantages.

We think the Heston stochastic-volatility framework and the Merton jump-diffusion model
are the two most compelling tools for capturing the dynamics we anticipate in future mar-
kets. Heston’s model generates time-varying volatility with mean-reverting behavior, reflecting
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true market dynamics. Merton’s jump-diffusion component explicitly accounts for crash risk,
ensuring that rare but impactful events like policy surprises or earnings gaps are integrated
into simulations and portfolio sizing rather than being systematically understated. On the rate
side, the CIR short-rate model provides a realistic, positive-only, mean-reverting description
of developed-market policy rates. Taken together, we think that this model best accounts for
future markets by blending these approaches by modeling asset prices with stochastic volatility
and jump risk while discounting cash flows under a CIR process.

We learned in this project that building an effective investment process will blend insights
across these different models. Doing so, investors can move beyond one-shot mean-variance
analysis and instead build portfolios that are not only optimized for past data but also adaptable
to a broad spectrum of future market environments. This project also clearly displayed the
added value of even the simplest options in driving value for investors.
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